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Abstract Infectious bronchitis virus (IBV) is the causal

agent of infectious bronchitis, which still remains one of

the most important poultry diseases worldwide because of

numerous serotypes and variants. A virulent strain of IBV,

isolated from Arkansas (Ark), was propagated in embryo-

nated eggs (Ark DPI 11). Following 101 serial passages in

embryonated eggs, an attenuated strain of IBV was estab-

lished (Ark DPI 101) that does not induce histopathological

lesions in the tracheae of infected chicks. To identify

sequence changes responsible for the attenuation of IBV,

complete genome sequences of both virulent and attenu-

ated Ark DPI viruses were obtained. Comparison of the

genome sequences of the virulent and attenuated Ark DPI

viruses reveals that these viruses are similar and differ only

by 21 nucleotides, resulting in 17 amino acids changes.

Most of those substitutions are located in the replicase 1a

and spike genes. No differences were observed in gene 3,

M or 5a, and only one nucleotide substitution each was

present in 5b, N and 30UTR. By comparing the deduced

amino acid sequences of virulent and attenuated viruses,

we identified sequence changes responsible for the adap-

tation and attenuation of the IBV-Ark DPI strain.

Avian infectious bronchitis virus (IBV), a member of the

family Coronaviridae, order Nidovirales [6], is a highly

infectious pathogen of domestic fowl. IBV is an enveloped

virus that replicates in the cell cytoplasm and has a single-

stranded, positive-sense RNA genome of 27.6 kb in size [2].

The IBV genome comprises ten open reading frames

(ORFs). The ORF1 or replicase gene contains two over-

lapping open reading frames, ORF 1a and 1b [2]. The ORF

1b is produced as a fusion protein of 1a and 1b by -1

frameshift translation [3]. The IBV genome encodes four

major structural proteins: the spike (S) glycoprotein, the

small envelope (E) protein, the membrane (M) glycoprotein,

and the nucleocapsid (N) protein [22, 23]. The spike protein

is cleaved into S1 and S2, of which S1 produces neutralizing

and serotype-specific antibodies [8, 19]. Because of the

error-prone nature of RNA polymerase, coronavirus geno-

mic RNA accumulates several point mutations during it

replication, which leads to the emergence of new serotypes

and variants [13]. In the case of IBV, most mutations occur

in the spike glycoprotein, which is necessary for viral

attachment and entry into host cells [11, 27, 28].

While it is possible to study the evolution of viruses and

its impact on viral pathogenicity by comparing genomic

sequences of heterologous strains, the analysis of homol-

ogous strains provides a unique opportunity to understand

specific genes that are likely to be involved in viral

pathogenicity. To identify specific sequence changes

responsible for adaptation of the field virus to chick

embryonic tissue and subsequent attenuation, we carried

out comparative sequence analysis of the virulent Arkansas

(Ark) DPI 11 (passage 11 in chick embryo) strain and its
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egg-adapted attenuated vaccine virus, Ark DPI 101 (pas-

sage 101 in chick embryo). Here, we have chosen Ark DPI

as a model to determine the molecular basis of attenuation

of IBV. This is the first report of comparative and complete

genome sequence analysis of two homologous infectious

bronchitis viruses to identify sequence changes responsible

for adaptation to chick embryo and subsequent attenuation

of IBV.

Chicken embryo passage numbers 11, 26, 51, and 101 of

the Ark DPI strain were performed in Dr. Gelb’s laboratory

at the University of Delaware. Seed stocks of each passage

number were prepared by inoculating 9-day-old specific-

pathogen-free (SPF) embryonated chicken eggs and

collecting allantoic fluid 72 h post-inoculation. Forty-one-

day-old SPF leghorn chickens (SPAFAS, Inc., Norwich,

CT) were assigned to 5 treatment groups of 8 birds each

(Table 1). Chicks in groups 1 through 4 were inoculated

intratracheally with 104.5 embryo infectious dose50 (EID50)

per chick of virus from each of the different passage

numbers. Experimental inoculation of one-day-old chicks

was carried out to evaluate the virulence of Ark DPI 11 and

Ark DPI 101. The results of pathogenicity studies, sum-

marized in Table 1, clearly demonstrate that the virulent

IBV-Ark DPI strain is gradually attenuated after passage in

chicken embryos.

Viral RNA was extracted from allantoic fluid seed

stocks and stored at -20�C using the Qiagen RNAeasy kit

according to the manufacturer’s instructions. The RT-PCR

and the cloning were carried out as described earlier [1].

DNAs from three independent clones were sequenced for

each amplicon to exclude errors that can occur from RT

and PCR reactions. The assembly of contiguous sequences

and multiple sequence alignments were performed with the

GeneDoc software [17]. The complete sequences of Ark

DPI strain embryo passage numbers 101 and 11 have been

submitted to GenBank with the accession numbers

EU418975 and EU418976, respectively.

The genomes of both viruses of Ark DPI consist of

27,620 nucleotides (nts) excluding the poly (A) tail and

include ten ORFs flanked by 50 (529 nts) and 30 (507 nts)

untranslated regions (UTRs). The genome organization of

Ark DPI is 50-Rep1a-Rep1b-S-3-M-5-N-30, as shown in

Fig. 1. In this comparative study, we found only 21

nucleotides differences between virulent and avirulent

ArkDPI strains, which result in 17 amino acids changes

(see Table 2). A single amino acid substitution was found

in the p87 protein at nucleotide position 1,107. A similar

kind of single amino acid change was reported previously

in this coding region (nt 529–1,263) when challenge and

vaccine viruses of the M41 strain were compared [14]. The

role of the p87 protein is not clearly defined, but it may

have a negative effect on PLpro-mediated proteolytic

cleavage at the p87/p195 site [30]. The amino acid sub-

stitution found in the region of PL1pro at position 945 is

unpredictable, because PL1pro, is inactive in IBV [30]. Two

nucleotide differences were observed in viral proteinase

PL2pro and one of them is silent. The amino acid substi-

tution from acidic Asp to neutral Gly found in PL2pro

region could be considered an important one. This amino

acid substitution is very close to the active catalytic site

(nucleophile cysteine) of PL2pro and could possibly inter-

fere with proteolytic processing. Therefore, we speculate

that this amino acid substitution may restrict viral matu-

ration or replication. The amino acid substitution found in

domain Y and p9 is difficult to predict because of role of

both is unknown. A substitution of Ser to Pro was found in

the virulent strain at nucleotide position 10,036 in the HD3

domain. Earlier, it was shown that some of the ORF1a-

encoded hydrophobic domains are involved in membrane

association of the replication complex of members of the

Nidovirales [21, 24, 25]. Hence, this substitution might be

critical for adaptation of virus by controlling the replication

rate of the virus in different hosts. One amino acid sub-

stitution was found in the growth-factor-like (GFL) protein,

which is involved in the growth factor signaling pathway

[16]. The amino acid change from polar Thr to non-polar

Ile may interrupt membrane association of this protein and

thereby affect viral replication.

The replicase gene is usually not subjected to host

immunity and is quite conserved in coronaviruses [15]. The

main replicase proteins, RNA-dependent RNA polymerase

(RdRp) and 3C-like cysteine protease (3CLpro) or main

proteinase (Mpro), were highly conserved, and not a single

amino acid difference was noted. Virulent and attenuated

Table 1 Results of experimental inoculation of day-old chicks with

IBV-Ark DPI strain obtained after different numbers of passages in

embryos

IBV embryo

passage number

Mortality

(%)

Microscopic

tracheal

lesionsA (%)

Mean body

weightB (g)

11 8a 100 242 ± 64a

26 8a 100 267 ± 24a

51 0b 20 277 ± 25b

101 0b 20 305 ± 22b

Negative control 0b 0 347 ± 12b

A Presence of microscopic lesion in the trachea of chicks 6 days post-

inoculation, when the most severe lesions are detected. Criteria for

IBV infection are the observation of moderate-to-severe lesions in

one or more of the following categories: deciliation, edema, epithelial

hyperplasia, mucous gland hyperplasia, mucous gland exhaustion and

mononuclear cell infiltration
B Body weights ± standard deviation on day 14 post-inoculation

when differences between treatments are greatest

Within a column, values followed by different superscript letters are

significantly (p \ 0.05) different
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strains differed by one amino acid in the helicase domain at

nucleotide position 15,763. The amino acid change of Arg

for His in the attenuated strain might significantly alter

viral replication.

Among the structural genes, most of the nucleotide

differences were located in the spike gene. Out of eight

amino acid differences in the S protein, six were in the S1

region, located between amino acid positions 42 and 324. It

has been shown that the S protein of coronaviruses is

responsible for cell tropism [4, 12, 20]. Earlier workers

predicted three hypervariable regions (HVR) in S1 of the

spike protein [7, 15, 18] depending upon clustering of

amino acid differences. In this study, we found a single

amino acid change in each one of the HVRs. The changes

were positive His to neutral Tyr in HVR I, polar Ser to

nonpolar Pro in HVR II, and positive polar Arg to neutral

nonpolar Ile in HVR III. Apart from HVRs, the region

between residues 162 and 214 had three amino acid sub-

stitutions. Previous studies have shown that HVRs encode

the serotype- and neutralization-specific epitopes, and the

amino acid substitutions observed between Ark DPI 11 and

Ark DPI 101 in the S1 region of the spike protein may have

a similar function [7, 15]. Our findings are supported by a

recent study, which revealed that a single passage of Ark

DPI vaccine in a chicken led to selection of virus popula-

tions with an S1 gene that is similar to that of the virulent

parental strain [26]. It is evident that the markers of viru-

lence and adaptation reside mostly in the S1 protein. Of the

two amino acid substitutions in the S2 region, one is

located downstream and in the vicinity of the fusion pep-

tide, and the other one is located in heptad repeat region 2.

These mutations in S2 may alter the fusogenic properties of

the S protein. The S1 undergoes more nucleotide changes

than S2, which is quite conserved. But minimal changes in

S2 are enough to alter the membrane fusion ability of the

spike protein and thereby infectivity [9]. Interestingly, out

of eight amino acid substitutions in S, six of the charged

residues in Ark DPI 11 were mutated to neutral residues in

Ark DPI 101. The two charged amino acids of Ark DPI 11

S2 were changed to membrane-interacting (hydrophobic)

residues in Ark DPI 101. These residue changes in the S

protein may contribute to adaptation of field virus to chick

embryonic tissue and subsequent attenuation of the virus.

There was one amino acid difference between the

attenuated and the virulent strain found in the 5b protein.

The role of gene 5 in pathogenesis and replication is not

Fig. 1 Organization of the infectious bronchitis virus genome. The

genome of Ark DPI is 27,620 nt long, excluding the poly (A) tract.

Middle ten genes and their ORFs. The scale indicates the approximate

positions and sizes of genes in the Ark DPI genome. Bottom putative

domains of ORF1a/1b polyprotein: nsp non-structural protein; Ac
acidic domain; X unknown domain X; PL1 papain-like proteinase1;

PL2 papain-like proteinase 2; Y unknown domain Y; HD hydrophobic

domain; 3CL 3C-like proteinase; G growth-factor-like protein (GFL);

RdRp RNA-dependent RNA polymerase; Hel helicase; ExoN exori-

bonuclease; Ne nidoviral uridylate-specific endoribonuclease; MT 20-
O-ribose methyltransferase. Top details of spike protein. SP signal

peptide; RRSRR/S spike protein cleavage site between 544 and 545aa;

TM transmembrane domain of spike protein. Nucleotide nt and amino

acid AA differences between ArkDPI 11 and 101 and their approx-

imate positions are depicted
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clear, and it is considered non-essential for replication of

virus [5]. Therefore, this amino acid difference in the 5b

protein could be regarded as non-significant for viral

attenuation. There was a notable nucleotide substitution

found in the N protein gene, and one in the 30UTR. In the

attenuated strain, at nucleotide position 27,101 in the N

gene, G was changed to A, and at the same time, at

nucleotide position 21,580 in the 30UTR, C was changed to

T. This corresponding nucleotide change seems to be sig-

nificant, because earlier studies demonstrated that the N

protein binds very strongly to the extreme 30 end of UTR

[29]. The binding of the N protein to the 30UTR is essential

for synthesis of negative-strand viral RNA. It has been

shown that the N protein interacts with the 30UTR, but the

sequence–specific interaction between the N gene and the

30UTR is not clear [29]. The nucleotide substitutions found

in N and the 30UTR suggest that it may have an impact on

viral replication and thereby on viral pathogenesis.

The role of the replicase gene of IBV in pathogenicity is

not well understood. However, the amino acid changes in

the ORF1a/1b proteins give an insight into putative resi-

dues that may be involved in the adaptation to chick

embryonic tissue and subsequent attenuation of the virus.

Although Ark DPI 11 and Ark DPI 101 are 99.92% similar

in their nucleotide sequences, the pathogenicity of these

viruses is entirely different. The spike protein is the major

determinant of cell tropism in IBV, and the majority of

nucleotide differences observed in the S1 gene in this study

support and extend earlier observations [4]. The substitu-

tions in the replicase proteins should be considered critical

for their role in replication, and thus the pathogenicity of

the virus. Even though only structural genes of IBV are

known for affecting pathogenicity [4, 10], this study also

suggests the involvement of the replicase gene.
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